The Pacific Institute for the Mathematical Sciences is pleased to announce the following network-wide graduate courses in mathematical sciences. These courses are available online and provide access to experts from throughout the PIMS network.
Students at Canadian PIMS member universities may apply for graduate credit via the Western Deans’ Agreement (WDA). Please be advised, in some cases students must enroll 6 weeks in advance of the term start date and will typically be required to pay ancillary fees to the host institution (as much as $700!) or explicitly request exemptions. Please see the WDA section for details of fees at specific sites, and check the individual courses below for registration details. Courses hosted at UW must nominate a co-instructor at a Canadian PIMS site. That site will be used to process WDA student applications.
Students at universities not covered by the WDA but which are part of the Canadian Association for Graduate Studies (CAGS) may still be eligible to register for this course under the Canadian University Graduate Transfer Agreement (CUGTA). Details of this program vary by university and are also typically subject to ancillary fees. Please contact your local Graduate Student Advisor for more information.
The courses in this section are currently open for registration. Expand each item to see the course details.
Soumik Pal : soumikpal@gmail.com
University of Washington
Young-Heon Kim : yhkim@math.ubc.ca
University of British Columbia
First year graduate course in real analysis and/or probability.
This course is available for registration under the Western Dean's Agreement but registrations must be approved by the course instructor. Please contact the instructor (using the email link to the left) including details of how you meet the course prerequisites. Next, you must complete the Western Deans' Agreement form , with the following course details:
University of Washington Students:
All Other WDA Students:
Completed forms should be returned to your graduate advisor who will sign it and take the required steps. For students at PIMS sites, please see this list to find your graduate advisor, for other sites, please see the Western Deans' Agreement website .
The Western Deans' Agreement provides an automatic tuition fee waiver for visiting students. Graduate students paying normal required tuition fees at their home institution will not pay tuition fees to the host institution. However, students will typically be be required to pay other ancillary fees to the host institution, or explicitly request exemptions (e.g. Insurance or travel fees). Details vary by university, so please contact the graduate student advisor at your institution for help completing the form. Links to fee information and contact information for PIMS member universities is available below in the WDA section.
Students at universities not covered by the WDA but which are part of the Canadian Association for Graduate Studies (CAGS) may still be eligible to register for some courses under the terms of the Canadian University Graduate Transfer Agreement (CUGTA). Details of this program vary by university and registration is also typically subject to ancillary fees. Both your local and the hosting university must participate in the agreement (e.g. UBC does not participate in CAGS). Please contact the relevant graduate student advisors for more information.
The modern theory of Monge-Kantorovich optimal transport is barely three decades old. Already it has established itself as one of the most happening areas in mathematics. It lies at the intersection of analysis, geometry, and probability with numerous applications to physics, economics, and serious machine learning. This two quarter long graduate topics course will serve as an introduction to this rich and useful theory. We will roughly follow the following outline. Fall: Classical theory. Analytic description of solutions. Duality. Displacement convexity. The geometry of the Wasserstein space and Otto calculus. Winter: Entropy-regularized OT. Schroedinger bridges and statistical OT. This is a continuation of the sequence of OT+X courses under the Kantorovich Initiative.
Students at Canadian PIMS Member Universities may register through the Western Deans Agreement for the “shadow course” offered at UBC (see registration details above). Students at UW may register directly for the UW course. Course codes and other registration details for students in either of these cases are listed in the registration section above. Students at other institutions should contact one of the instructors to attend the course as a non-registered student.
Online instructions over Zoom. Written on a tablet. Notes will be provided. A Slack channel will be created for answering student questions. Weekly in person office hours will be held at UW and UBC.
Lecture notes will be distributed over Slack. Recorded lectures may be viewed on our YouTube channel.
This course may be open to students from universities outside of the PIMS network, and those coming from industry/government.
Jonathan Noel : noelj@uvic.ca
University of Victoria
A first course in linear algebra
A 3rd year course in any area of discrete mathematics or combinatorics
This course is available for registration under the Western Dean's Agreement but registrations must be approved by the course instructor. Please contact the instructor (using the email link to the left) including details of how you meet the course prerequisites. Next, you must complete the Western Deans' Agreement form , with the following course details:
Completed forms should be returned to your graduate advisor who will sign it and take the required steps. For students at PIMS sites, please see this list to find your graduate advisor, for other sites, please see the Western Deans' Agreement website .
The Western Deans' Agreement provides an automatic tuition fee waiver for visiting students. Graduate students paying normal required tuition fees at their home institution will not pay tuition fees to the host institution. However, students will typically be be required to pay other ancillary fees to the host institution, or explicitly request exemptions (e.g. Insurance or travel fees). Details vary by university, so please contact the graduate student advisor at your institution for help completing the form. Links to fee information and contact information for PIMS member universities is available below in the WDA section.
Students at universities not covered by the WDA but which are part of the Canadian Association for Graduate Studies (CAGS) may still be eligible to register for some courses under the terms of the Canadian University Graduate Transfer Agreement (CUGTA). Details of this program vary by university and registration is also typically subject to ancillary fees. Both your local and the hosting university must participate in the agreement (e.g. UBC does not participate in CAGS). Please contact the relevant graduate student advisors for more information.
Discrete optimization focuses on developing efficient methods to determine the maximum or minimum value of a function over a finite (discrete) domain. This course will cover a wide range of topics in discrete optimization which may include linear programming, semi-definite programming, dynamic programming, matroids, combinatorial algorithms, duality, hardness reductions, among others. We will also see many interesting applications of tools from Discrete Optimization to problems in combinatorics and other areas of mathematics and computer science.
This course will have an accompanying webpage
Materials related to the course, links and other updates will be posted to the course webpage as the course proceeds.
Remote access for this course will be provided via zoom. This course will be taught from the UVic Multiaccess classroom HHB 110. The room is equipped with multiple cameras in the ceiling which can capture two blackboard areas and TV screens that can be used to show the Zoom gallery. A demonstration of this system can be seen in the instructor’s existing Extremal Combinatorics Network Wide Course playlist. Notes and other course related material will be made available on the instructor’s website (see e.g. notes for Extreemal Combinatorics).
Lectures will also be live-streamed on the instructors YouTube channel and also be available to view there asynchronously.
This course may be open to students from universities outside of the PIMS network, and those coming from industry/government.
Chuck Doran : charles.doran@ualbreta.ca
University of Alberta
The course is designed to be accessible to M.Sc. students and above
This course is available for registration under the Western Dean's Agreement but registrations must be approved by the course instructor. Please contact the instructor (using the email link to the left) including details of how you meet the course prerequisites. Next, you must complete the Western Deans' Agreement form , with the following course details:
Completed forms should be returned to your graduate advisor who will sign it and take the required steps. For students at PIMS sites, please see this list to find your graduate advisor, for other sites, please see the Western Deans' Agreement website .
The Western Deans' Agreement provides an automatic tuition fee waiver for visiting students. Graduate students paying normal required tuition fees at their home institution will not pay tuition fees to the host institution. However, students will typically be be required to pay other ancillary fees to the host institution, or explicitly request exemptions (e.g. Insurance or travel fees). Details vary by university, so please contact the graduate student advisor at your institution for help completing the form. Links to fee information and contact information for PIMS member universities is available below in the WDA section.
Students at universities not covered by the WDA but which are part of the Canadian Association for Graduate Studies (CAGS) may still be eligible to register for some courses under the terms of the Canadian University Graduate Transfer Agreement (CUGTA). Details of this program vary by university and registration is also typically subject to ancillary fees. Both your local and the hosting university must participate in the agreement (e.g. UBC does not participate in CAGS). Please contact the relevant graduate student advisors for more information.
This course is an introduction to the theory of elliptic curves and modular forms at the graduate level. Elliptic curves will be introduced through both their classical analytic construction over the real and complex numbers and their algebraic realizations via normal forms over arbitrary fields. Moduli and monodromy considerations lead us to study the special role of the elliptic modular group SL(2,Z) and the crucial notions of modular functions and forms. Studying torsion points and level structure then motivates the extension to finite index subgroups and the theory of modular curves. Throughout the course, there will be an emphasis on hands-on explicit computations. Directed by the instructor, each student will complete a final project, presentation, and paper. Possible topics could include post-quantum elliptic curve cryptography, applications in string theory, geometry of elliptic modular surfaces, features of periods and Picard-Fuchs operators, etc.
The course will be taught over Zoom using a tablet and shared screen. Lecture notes will be written out live on a tablet. There will also be pre-prepared slides on certain topics. The in-class lecture notes will be saved and distributed as .pdf files. There will be a course webpage to host all of these plus additional course materials and readings.
The format will be Zoom based, with videos on. Breakout rooms will be used periodically for small group work. Students will be encouraged to “raise hands” with questions at any time.
This course may be open to students from universities outside of the PIMS network, and those coming from industry/government.
Steven Plotkin : steven.plotkin@ubc.ca
University of British Columbia
PHYS305 - Introduction to Biophysics (or equivalent)
This course is available for registration under the Western Dean's Agreement but registrations must be approved by the course instructor. Please contact the instructor (using the email link to the left) including details of how you meet the course prerequisites. Next, you must complete the Western Deans' Agreement form , with the following course details:
Completed forms should be returned to your graduate advisor who will sign it and take the required steps. For students at PIMS sites, please see this list to find your graduate advisor, for other sites, please see the Western Deans' Agreement website .
The Western Deans' Agreement provides an automatic tuition fee waiver for visiting students. Graduate students paying normal required tuition fees at their home institution will not pay tuition fees to the host institution. However, students will typically be be required to pay other ancillary fees to the host institution, or explicitly request exemptions (e.g. Insurance or travel fees). Details vary by university, so please contact the graduate student advisor at your institution for help completing the form. Links to fee information and contact information for PIMS member universities is available below in the WDA section.
Students at universities not covered by the WDA but which are part of the Canadian Association for Graduate Studies (CAGS) may still be eligible to register for some courses under the terms of the Canadian University Graduate Transfer Agreement (CUGTA). Details of this program vary by university and registration is also typically subject to ancillary fees. Both your local and the hosting university must participate in the agreement (e.g. UBC does not participate in CAGS). Please contact the relevant graduate student advisors for more information.
This graduate course is designed to provide graduate students with key concepts and practical applications in Biophysics, with an emphasis on the quantitative tools as they are used in current research. Biophysics is a highly interdisciplinary field—the researchers who attend the annual Biophysical Society meeting, for example, come from departments spanning all of the STEM disciplines. Nevertheless, they share a common interest to establish a quantitative understanding of living matter. Despite growing interest however, a gap remains in graduate training to prepare students to contribute effectively to this broad and rapidly evolving field. This course aims to address this gap by covering both foundational and advanced concepts and applications that are commonly used by practicing biophysicists today. The structure of the course will follow selected advanced material from Physical Biology of the Cell by Rob Phillips, Jane Kondev, Julie Theriot, and Hernan G. Garcia. Each topic will be introduced conceptually, developed mathematically, and explored through real biological case studies using both textbook material and current literature. Given student interest, the course may include interviews with leading biophysicists on their recent published work. Topics will include:
Remote participation will be via zoom. Lectures will also be recorded and shared via UBC’s media capture system Panopto. Annotated notes on pre-distributed PDF slides are made during class using an iPad, recorded in real time, and uploaded to UBC’s Canvas server after class, along with links to the lecture recording.
This course may be open to students at universities outside of the PIMS network.
Andrew Warren : awarren@math.ubc.ca
University of British Columbia
Mathematical maturity at the second year master’s level or higher
Measure theory
This course is available for registration under the Western Dean's Agreement but registrations must be approved by the course instructor. Please contact the instructor (using the email link to the left) including details of how you meet the course prerequisites. Next, you must complete the Western Deans' Agreement form , with the following course details:
Completed forms should be returned to your graduate advisor who will sign it and take the required steps. For students at PIMS sites, please see this list to find your graduate advisor, for other sites, please see the Western Deans' Agreement website .
The Western Deans' Agreement provides an automatic tuition fee waiver for visiting students. Graduate students paying normal required tuition fees at their home institution will not pay tuition fees to the host institution. However, students will typically be be required to pay other ancillary fees to the host institution, or explicitly request exemptions (e.g. Insurance or travel fees). Details vary by university, so please contact the graduate student advisor at your institution for help completing the form. Links to fee information and contact information for PIMS member universities is available below in the WDA section.
Students at universities not covered by the WDA but which are part of the Canadian Association for Graduate Studies (CAGS) may still be eligible to register for some courses under the terms of the Canadian University Graduate Transfer Agreement (CUGTA). Details of this program vary by university and registration is also typically subject to ancillary fees. Both your local and the hosting university must participate in the agreement (e.g. UBC does not participate in CAGS). Please contact the relevant graduate student advisors for more information.
This course is a bridge into the machine learning literature for graduate students in mathematics. Compared to existing course offerings in our neighbouring departments (mainly https://www.cs.ubc.ca/~dsuth/532D/23w1 (https://www.cs.ubc.ca/~dsuth/532D/23w1)) we will assume that you know somewhat more analysis, but prior coding experience will not be required. Briefly, the learning objectives are:
Remote access to this course will be via zoom. The delivery mechanism will be either blackboard or via tablet depending on available rooms. A PDF textbook and/or research article readings will be distributed in advance of each class.
This course may be open to students from universities outside of the PIMS network.
Rebecca Tyson : rebecca.tyson@ubc.ca
University of British Columbia - Okanagan
This course is available for registration under the Western Dean's Agreement but registrations must be approved by the course instructor. Please contact the instructor (using the email link to the left) including details of how you meet the course prerequisites. Next, you must complete the Western Deans' Agreement form , with the following course details:
Completed forms should be returned to your graduate advisor who will sign it and take the required steps. For students at PIMS sites, please see this list to find your graduate advisor, for other sites, please see the Western Deans' Agreement website .
The Western Deans' Agreement provides an automatic tuition fee waiver for visiting students. Graduate students paying normal required tuition fees at their home institution will not pay tuition fees to the host institution. However, students will typically be be required to pay other ancillary fees to the host institution, or explicitly request exemptions (e.g. Insurance or travel fees). Details vary by university, so please contact the graduate student advisor at your institution for help completing the form. Links to fee information and contact information for PIMS member universities is available below in the WDA section.
Students at universities not covered by the WDA but which are part of the Canadian Association for Graduate Studies (CAGS) may still be eligible to register for some courses under the terms of the Canadian University Graduate Transfer Agreement (CUGTA). Details of this program vary by university and registration is also typically subject to ancillary fees. Both your local and the hosting university must participate in the agreement (e.g. UBC does not participate in CAGS). Please contact the relevant graduate student advisors for more information.
In this course we are learning to build and analyse nonlinear partial differential equation models. The focus of the course will be models of ecological systems, but the techniques learned apply broadly across application areas. We learn a wide variety of analytic, graphic, and simplification techniques which elucidate the behaviour of these mathematical models, whether or not a closed-form solution is available. By the end of the class, the students will be able to competently read and follow a research paper presenting and analysing a differential equation model from a wide variety of application areas. Broadly, the topics that we cover are applications of ecological applications of travelling waves, disease models, and pattern formation in reaction-diffusion and reaction-diffusion-chemotaxis models.
TBA
Lectures will be livestreamed via zoom. The lecturer will be writing on a whiteboard interspersed with pdf presentations. Lecture notes will be posted on Canvas.
This course may be open to students from universities outside of the PIMS network.
The courses in this section are not yet accepting registrations.
Anotida Madzvamuse : am823@math.ubc.ca
University of British Columbia
Ordinary differential equations
Numerical methods (Numerical Analysis I and II)
Partial differential equations
Matrix theory
Linear systems
Registration for this course is not currently available.
The purpose of this graduate course is to equip graduate students with cutting-edge techniques in data-driven mathematical and computational modelling, analysis and simulations of semi-linear parabolic partial differential equations (PDEs) of reaction-diffusion type. It will cover diverse areas in data-driven modelling using PDEs in biology. I will cover approaches on formulating models from data using first principles, mathematical analysis of reaction-diffusion systems such as linear stability analysis, basic concepts on bifurcation analysis and numerical bifurcation analysis. The second part will focus on numerical methods for PDEs including finite difference methods, and finite elements. This part will also deal with time-stepping schemes and nonlinear solvers for nonlinear PDEs. If time allows, we will look at applications of reaction diffusion theory to cell motility and pattern formation. To support theoretical modelling and numerical analysis, numerical algorithms will be developed and implemented in MATLAB as well as in open finite element source software packages such as FeNiCs, deal.ii and others. Students will be allowed to use packages of their choice as appropriate. Expertise and skills sets to be acquired through this course
We will use zoom for each lecture. Course notes will be distributed in advance and lecture notes will be distributed after each lecture.
This course may be open to students from universities outside of the PIMS network.
Ben Williams : tbjw@math.ubc.ca
University of British Columbia
a first course in real analysis, and some point-set topology, including quotient topologies, connectedness, path-connectedness.
Homotopy of maps and homotopy equivalence of spaces will be assumed, but the necessary background here can be quickly covered by self-study.
Fundamental groups and covering spaces, while helpful, are not necessary.
the theory of abelian groups, isomorphism theorems and the classification of finitely generated abelian groups.
Ring theory and the theory of modules over commutative rings is extremely helpful, but not formally required.
Registration for this course is not currently available.
This is a course in homology and cohomology of topological spaces. We study spaces and continuous functions by means of abelian groups and their homomorphisms. Topics will include cellular homology of spaces, calculation techniques and applications (e.g., fixed point theorems, invariance of domain), homological algebra, and cohomology, including the cup product and Poincaré duality.
Remote access for this course will be provided via zoom. The instructor intends to lecture from handwritten notes on a tablet. Lecture notes will be provided after the lectures have been delivered.
This course may be open to students from universities outside of the PIMS network, and those coming from industry/government.
Miranda Holmes-Cerfon : holmescerfon@math.ubc.ca
University of British Columbia
Good upper level undergraduate or early graduate knowledge of:
Registration for this course is not currently available.
This course will introduce the major tools in stochastic analysis from an applied mathematics perspective. Topics to be covered include Markov chains (both discrete and continuous), Gaussian processes, Ito calculus, stochastic differential equations (SDEs), numerical algorithms for solving SDEs, forward and backward Kolmogorov equations and their applications. It will pay particular attention to the connection between stochastic processes and PDEs, as well as to physical principles and applications. The class will attempt to strike a balance between rigour and heuristic arguments: it will assume that students have seen a little analysis, particularly in the context of studying PDEs, but will generally avoid measure theory. The target audience is graduate students in applied mathematics or related fields, who wish to use these tools in their research for modelling or simulation. The course will be divided roughly into two parts: the first part will focus on stochastic processes, particularly Markov chains, and the second part will focus on stochastic differential equations and their associated PDEs.
Remote access will be provided via zoom. The lectures will be delivered mostly on blackboards with occasional slides. PDF lecture notes will be handed out.
This course is open to students from within the PIMS network of universities.
The courses in this section are currently running but are no longer accepting registrations.
Jayadev Athreya : jathreya@uwa.edu
University of Washington
Ozgur Yilmaz : oyilmaz@math.ubc.ca
University of British Columbia
Complex Analysis
Manifolds
Registration for this course is not currently available.
Translation surfaces and their moduli spaces have been the objects of extensive recent study and interest, with connections to widely varied fields including (but not limited to) geometry and topology; Teichmüller theory; low-dimensional dynamical systems; homogeneous dynamics and Diophantine approximation; and algebraic and complex geometry. This course will serve as an introduction to some of the big ideas in the field, centered on the ergodic properties of translation flows and counting problems for saddle connections, and associated renormalization techniques, without attempting to reach the full state of the art (an aim that is in any case impossible given the speed at which the field is evolving).
We will start by introducing the important motivating example of the flat torus, exploring its geometry, and its associated dynamical and counting problems. The linear flow on the torus and its associated first return map, a rotation of a circle, are amongst the first dynamical systems ever studied. The counting of closed orbits is intricately tied to number theory. We discuss, as motivation, the moduli space of translation surfaces on a torus, a bundle over the well-known modular curve and the action of $GL^+(2,\mathbb R)$ on this space of translation surfaces. Translation surfaces are higher-genus generalizations of flat tori. We will define translation surfaces from three perspectives (Euclidean geometry, complex analysis, and geometric structures), and show how some translation surfaces arise from unfolding billiards in rational polygons. We will give a short introduction to Teichmüller theory and its relation to the study of translation surfaces, and discuss the natural dynamical systems associated to translation surfaces, namely, linear flows and their first return maps, interval exchange transformations. We will explore their ergodicity and mixing properties, and will study an important example of a translation surface flow for which every orbit is dense but not every orbit is equidistributed with respect to Lebesgue measure, a phenomenon that does not occur in the case of linear flows on the torus. We will show how information about the recurrence properties of an orbit of a translation surface under the positive diagonal subgroup of $SL(2, \mathbb R)$ (the Teichmüller geodesic flow) can be used to get information about the ergodic properties of the associated linear flow on an individual translation surface. As another example of the strength of renormalization ideas, we will show how the ergodic properties of the $SL(2, \mathbb R)$-action can be used to obtain counting results for saddle connections and, subsequently. Finally we will discuss examples, characterizations, and properties of surfaces with large affine symmetry groups, known as lattice or Veech surfaces.
The instructor will use a tablet and Zoom. The tablet will be displayed locally in the classroom and via zoom. Lecture notes will be distributed in PDF format.
This class will meet every Monday, Wednesday and Friday from 1:30-2:50 (Pacific time), starting on March 31st. Remote participation is via zoom
The courses in this section ran in a previous term.
Stanley Yao Xiao : stanleyyao.xiao@unbc.ca
University of Northern British Columbia
Group and ring theory
linear algebra
real analysis
Registration for this course is not currently available.
In the past 25 years or so, the subject of “Arithmetic Statistics”, beginning with the work of Bhargava’s success in enumerating rings and fields of low degree and rank, and Bhargava and Shankar’s proof of the boundedness of algebraic rank of elliptic curves, is an enormously exciting subject. We will give an introduction to the subject centred on the work of Bhargava and his coworkers.
Lectures will be conducted via zoom, using electronic slides. Slides, assignments and exams will be distributed electronically. Lectures will be recorded and made available to registered students.
Anotida Madzvamuse : am823@math.ubc.ca
University of British Columbia
Ordinary differential equations
Numerical methods (Numerical Analysis I and II)
Partial differential equations
Matrix theory
Linear systems
Registration for this course is not currently available.
The purpose of this graduate course is to equip graduate students with cutting-edge techniques in data-driven mathematical and computational modelling, analysis and simulations of semi-linear parabolic partial differential equations (PDEs) of reaction-diffusion type. It will cover diverse areas in data-driven modelling using PDEs in biology. I will cover approaches on formulating models from data using first principles, mathematical analysis of reaction-diffusion systems such as linear stability analysis, basic concepts on bifurcation analysis and numerical bifurcation analysis. The second part will focus on numerical methods for PDEs including finite difference methods, and finite elements. This part will also deal with time-stepping schemes and nonlinear solvers for nonlinear PDEs. If time allows, we will look at applications of reaction diffusion theory to cell motility and pattern formation. To support theoretical modelling and numerical analysis, numerical algorithms will be developed and implemented in MATLAB as well as in open finite element source software packages such as FeNiCs, deal.ii and others. Students will be allowed to use packages of their choice as appropriate. Expertise and skills sets to be acquired through this course
We will use zoom for each lecture. Course notes will be distributed in advance and lecture notes will be distributed after each lecture.
Martin Frankland : Martin.Frankland@uregina.ca
University of Regina
A course in general topology or metric space topology (required)
A course in group theory (strongly recommended)
Registration for this course is not currently available.
The course is a first semester of algebraic topology. Broadly speaking, algebraic topology studies spaces and shapes by assigning algebraic invariants to them. Topics will include the fundamental group, covering spaces, CW complexes, homology (simplicial, singular, cellular), cohomology, and some applications.
Lectures will take place Monday, Wednesday and Friday 12:30 - 1:20 PM Regina time.
The class will be in a hybrid format hosted in a classroom equipped with hyflex technology.
Lecture notes will be projected on the screen, shared simultaneously on Zoom, and posted afterwards on the course website.
Nils Bruin : nbruin@sfu.ca
Simon Fraser University
Registration for this course is not currently available.
This course provides an introduction into analytic number theoretic methods with applications to arithmetic geometry. We will study Dirichlet series with applications to distributions of prime numbers and as examples of L-series. We will also look at modular forms and their applications to the arithmetic of elliptic curves and their moduli spaces. We will also consider results in diophantine approximation, such as lower bounds on linear combinations of logs of algebraic numbers, with as application Siegel’s theorem on finiteness of integral points on elliptic curves.
The class will be held in a room equipped with controllable cameras. The instructor will write on whiteboards in this room and the camera controls used to provide clear views of the boards. Zoom links will be available on the course webpage (via Canvas, which will be available to enrolled students).
Please see the SFU Calendar for more details about this course.
Jonathan Noel : noelj@uvic.ca
University of Victoria
An undergraduate course on discrete mathematics, combinatorics or graph theory. It is recommended that students have taken at least two such courses.
Registration for this course is not currently available.
This course covers classical problems and modern techniques in extremal combinatorics. The first part of the course is on extremal properties of families of sets: e.g.
Other topics may include VC dimension, Kneser’s Conjecture, the Kruskal-Katona Theorem and the Littlewood Offord Problem. The rest of the course is on extremal graph theory: e.g.
Other topics may include the Szemerédi Regularity Lemma, Shannon Capacity, the Entropy Method, the Container Method and Stability. The course webpage, which includes a link to a preliminary version of the course notes, can be found here.
This course will run Sept. 4th-Dec. 4th, 2024. Lectures will take place every Tuesday, Wednesday and Friday from 10:30am-11:20am (Pacific Time). See the UVic course catalog entry for more details.
Lectures will be livestreamed via Zoom. The lecturer will write on chalkboards which will be shared via Zoom. Recordings of the lectures will be available for asynchronous viewing. Preliminary lecture notes are available on the course website and assignments will be distributed electronically.
David Goluskin : goluskin@uvic.ca
University of Victoria
Introductory PDEs
Introductory analysis
Registration for this course is not currently available.
The course will be an introduction to the behaviour of fluids (liquids and gases) from an applied math perspective, starting with an introduction to the Navier-Stokes equations and other PDEs used to model fluids. The emphasis will be on physically relevant properties of solutions that can be deduced mathematically. The course will have more mathematics than a typical physics or engineering fluids course, including basic functional analysis and variational methods, and it will have more physics than a pure PDE analysis course. Through detailed study of several fundamental model systems, we will see PDE examples of topics that may be more familiar in the context of ODE dynamical systems, such as linear stability, nonlinear stability, bifurcations and chaos. Undergraduate knowledge of PDEs and real analysis are assumed.
There will be no exams, only assignments access and submitted online via Crowdmark.
The lecturer will use zoom for each lecture. Typed lecture notes will be distributed electronically.
Manish Patnaik : patnaik@ualberta.ca
University of Alberta
We will aim to make this course accessible to students with a basic background in algebra and analysis (at the level of introductory graduate courses) and basic topology (having seen cohomology before would be useful, but is not absolutely essential). Although no specific knowledge from differential geometry, Lie theory, or number theory are required, additional familiarity or interest in these fields will be useful, especially in the latter parts of the course.
Registration for this course is not currently available.
The most basic example of an arithmetic group is $\Gamma=SL_n(Z),$ and understanding the cohomology of this group (and its close relatives) will be the basic theme of this course. The cohomology we are interested in can also be identified with that of the locally symmetric space $\Gamma \setminus X$ where, in this case, $X= SL_n(R)/ SO(n)$ is a generalization of the (complex) upper half plane. As such, a diverse set of techniques, stemming from geometry, topology, harmonic analysis, and number theory can be used to analyze the situation. After carefully developing the basics of the subject, we will present some of the major developments in this area (mostly from the 1960s-1970s), and then end with an overview of modern directions.
The lecturer will use a tablet connected to zoom/camera to live stream lectures and notes. Hand written (from table) and typed lecture notes will be distributed.
Lior Silberman : lior@math.ubc.ca
University of British Columbia
Registration for this course is not currently available.
This course presents classical mechanics to a mixed audience of mathematics and physics undergraduate and graduate students. It is complementary to regular phsyics courses in that while the physics background will be developed the emphasis will be on the resulting mathematical analysis. Physics topics may include Newtonian mechanics and Galilean symmetry, Lagrangian mechanics, conservation laws and Noether’s Theorem, rigid body motion, Hamiltonian mechanics. Mathematical topics may include existence and uniqueness of solutions to ODE, calculus of variations, convexity and Legendre transformations, manifolds, tangent and cotangent vectors, rotations and the orthogonal group.
Full information about this course is available on the course website.
Lectures will be held in-person on the UBC campus and on Zoom. Lectures will be recorded and the videos posted to an unlisted but openly accessible YouTube playlist. There will be Zoom office hours and a Piazza discussion board.
Rebecca Tyson : rebecca.tyson@ubc.ca
University of British Columbia - Okanagan
Registration for this course is not currently available.
In this course we are learning to build and analyse nonlinear differential equation models. The focus of the course will be models of ecological systems, but the techniques learned apply broadly across application areas. We learn a wide variety of analytic, graphic, and simplification techniques which elucidate the behaviour of these mathematical models, whether or not a closed-form solution is avalable. By the end of the class, the students will be able to competently read and follow a research paper presenting and analysing a differential equation model from a wide variety of application areas.
The class will meet on Monday, Wednesday and Friday during term from 12pm-1pm (Pacific Time).
Lectures will be livestreamed via zoom. The lecturer will be writing on a whiteboard.
Shaun Lui : Shaun.Lui@umanitoba.ca
University of Manitoba
Mikael Slevinsky : Richard.Slevinsky@umanitoba.ca
University of Manitoba
Undergraduate analysis and PDEs
Some exposure to numerical analysis desirable, but not necessary
Some homework questions will require computer programming (MATLAB or Julia, etc.)
Registration for this course is not currently available.
Spectral methods are numerical methods for solving PDEs. When the solution is analytic, the convergence rate is exponential. The first part of this course gives an introduction to spectral methods. The emphasis is on the analysis of these methods including truncation and interpolation error estimates, and convergence and condition number estimates. The second part of the course focuses on fast algorithms for orthogonal polynomials. These algorithms leverage data-sparsities that are present in many of the problems when solved by orthogonal polynomial expansions.
This class will meet Mondays and Wednesdays from 11am-12:15pm (CDT)
Lectures will be delivered via Zoom using iPad with GoodNotes.
Yaozhong Hu : y.hu@ualberta.ca
University of Alberta
Some knowledge on Differential equations and Probability Theory
Registration for this course is not currently available.
This is a one semester three credit hour course. We shall first briefly introduce some basic concepts and results on stochastic processes, in particular the Brownian motions. Then we will discuss stochastic integrals, Ito formula, the existence and uniqueness of stochastic differential equations, some fundamental properties of the solution. We will concern with the Markov property, Kolmogorov backward and forward equations, Feynman-Kac formula, Girsanov formula. We will also concern with the ergodic theory and other stability problems. We may also mention some results on numerical simulations, Malliavin calculus and so on.
We will use zoom for each lecture. The eclass website will be used to post lecture slides, homework collections, monitor midterm and final examinations
Khanh Dao Duc : kdd@math.ubc.ca
University of British Columbia
Registration for this course is not currently available.
Advances in imaging techniques have enabled the access to 3D shapes present in a variety of biological structures: organs, cells, organelles, and proteins. Since biological shapes are related to physiological functions, biological studies are poised to leverage such data, asking a common statistical question: how can we build mathematical and statistical descriptions of biological morphologies and their variations? In this course, we will review recent attempts to use advanced mathematical concepts to formalize and study shape heterogeneity, covering a wide range of imaging methods and applications. The main mathematical focus will be on basics of image processing (segmentation, skeletonization, meshing), Diffeomorphisms and metrics over shape space, optimal transport theory with application for image analysis, manifold learning, with some other concepts covered in specific applications (e.g. quasiconformal mapping theory for shape representation, 3D reconstruction in Fourier space…). Students will be encourage to work in groups to present research papers and do a small project to pass the course. This course will also build on the recent BIRS workshop, Joint Mathematics Meetings, and the upcoming SIAM workshops (LSI 2024, SIMODS 2024) on this topic, with some participants to these events invited to contribute to this course and present their research.
Remote access will be via zoom. A combination of prepared slides and hand written notes will be used. The hand written notes will be on a blackboard or tablet depending on room availability. The lecturer will distribute lecture notes online.
From time to time online or hybrid courses which are not part of the PIMS Network Wide Courses program are sent to us. These courses are not officially supported by PIMS, but may be of interest to students within our network. Please see the External Courses page to see courses or to submit one for inclusion.
In order to register in a PIMS digital course for the Western Deans’ agreement you must obtain the approval of the course instructor. Once you have obtained their approval please complete the Western Deans’ agreement form . The exact process and deadlines vary by site, but the general steps for students at PIMS member universities are
In the event of any problems or delays while completing the WDA form, PIMS strongly recommends staying in touch with the instructor of the course, as they may be able to offer assistance.
Select your university and the university hosting the course you are interested in below. Read both sets of instructions carefully before proceeding. In all cases students should contact the host institution to determine which fee exemptions they may be eligible and how to apply for them before the start of term.
Please note: The Western Deans’ Agreement provides an automatic tuition fee waiver for visiting students. Graduate students paying normal required tuition fees at their home institution will not pay tuition fees to the host institution. However, students will typically be required to pay other ancillary fees to the host institution or explicitly request exemptions (e.g. Insurance or travel fees).
For help completing the Western Deans’ agreement form, please contact the graduate advisor at your institution. For more information about the agreement, please see the Western Deans’ Agreement website .