Process-Based Hydrological Modelling
Martyn P. Clark (University of Saskatchewan)Sep 1, 2020 — Dec 30, 2020
About the course
The University of Saskatchewan Centre for Hydrology is offering an intensive course on the fundamentals of process-based hydrological modelling, including model development, model application, and model evaluation. The course will explain the model constructs that are necessary to simulate dominant hydrological processes, the assumptions that are embedded in models of different type and complexity, and best practices for model development and model applications. The course will cover the full model ecosystem, including the spatial discretization of the model domain, input forcing data generation, model evaluation, parameter estimation, post-processing, uncertainty characterization, data assimilation, and ensemble streamflow forecasting methods. The overall intent of the course is to provide participants with the understanding and tools that are necessary to develop and apply models across a broad range of landscapes. Specifically, the course will convey an understanding of how to represent existing process understanding in numerical models, how to devise meaningful model experiments, and how to evaluate these experiments in a systematic way. Along the way, participants will have the opportunity to build models, run models, make changes, and analyze model output.
Registration
This course is available for registration under the Western Dean's Agreement. To register, you must obtain the approval of the course instructor and you must complete the Western Dean's agreement form , using the details below. The completed form should be signed by your home institution department and school of graduate studies, then returned to the host institution of the course.
Enrollment Details
- Course Name
- Process-Based Hydrological Modelling
- Date
- Sep 1, 2020 — Dec 30, 2020
- Course Number
- Geography 825
- Section Number
- Section Code
Instructor(s)
For help with completing the Western Dean’s agreement form, please contact the graduate student program coordinator at your institution. For more information about the agreement, please see the Western Dean's Agreement website
Other Course Details
Reference Texts
Reading/Textbooks
- Clark, M. P., Y. Fan, D. M. Lawrence, J. C. Adam, D. Bolster, D. J. Gochis, . . . X. Zeng, 2015a: Improving the representation of hydrologic processes in Earth System Models. Water Resources Research, 51, 5929-5956, doi: 10.1002/2015WR017096.
- Clark, M. P., B. Nijssen, J. D. Lundquist, D. Kavetski, D. E. Rupp, R. A. Woods, . . . R. M. Rasmussen, 2015b: A unified approach for process-based hydrologic modeling: 1. Modeling concept. Water Resources Research, 51, 2498-2514, doi: 10.1002/2015WR017198.
- Clark, M. P., B. Nijssen, J. D. Lundquist, D. Kavetski, D. E. Rupp, R. A. Woods, . . . D. G. Marks, 2015c: A unified approach for process-based hydrologic modeling: 2. Model implementation and case studies. Water Resources Research, 51, 2515-2542, doi: 10.1002/2015WR017200.
- Clark, M. P., B. Schaefli, S. J. Schymanski, L. Samaniego, C. H. Luce, B. M. Jackson, . . . S. Ceola, 2016: Improving the theoretical underpinnings of process-based hydrologic models. Water Resources Research, 52, 2350-2365, doi: 10.1002/2015WR017910
- Clark, M. P., M. F. P. Bierkens, L. Samaniego, R. A. Woods, R. Uijlenhoet, K. E. Bennett, . . . C. D. Peters-Lidard, 2017: The evolution of process-based hydrologic models: historical challenges and the collective quest for physical realism. Hydrology and Earth System Sciences, 21, 3427-3440, doi: 10.5194/hess-21-3427-2017