Mathematical Models in Cell Biology

Leah Edelstein-Keshet (University of British Columbia)

Sep 1, 2022 — Dec 31, 2022

About the course

Cell biology provides many interesting challenges across many spatial scales. Mathematical and computational modeling are tools that can help gain a better understanding of cellular phenomena. At the small scales, there are puzzling examples of patterns formed by proteins inside cells, and dynamic rearrangement of cellular components that enable cells to actively move. At higher scales, cells sense chemical gradients, exhibit active motility, and interact with other cells to form functioning tissues and organs. Mathematical and computational models allow us to explore many of the leading questions at each of these levels. How do patterns form spontaneously? What are the limits of cell sensing? How do cells polarize and migrate in a directed manner? How does a collection of cells self-organize into a structured tissue? In this graduate course, we will explore such questions in the context of deterministic models (ordinary and partial differential equations) as well as stochastic simulations that emphasize multiscale approaches.

The course is designed to be equally suitable for mathematics graduate students looking to learn advanced modeling methods, interesting applications, and topics for further analysis, and biologists who want to understand and critically assess models and carry out advanced multiscale simulations. All participants will learn multiscale simulations (using the open source software Morpheus) to visualize behaviour that emerges from intracellular signaling systems, cell migration, and cell-cell interactions. An emphasis will be on communication across disciplines, matching students from distinct disciplines for joint presentations and projects. Learning goals, expectations, assignments, and grading will take into account the student background.


This course is available for registration under the Western Dean's Agreement. To register, you must obtain the approval of the course instructor and you must complete the Western Dean's agreement form , using the details below. The completed form should be signed by your home institution department and school of graduate studies, then returned to the host institution of the course.

Enrollment Details

Course Name
Mathematical Models in Cell Biology
Sep 1, 2022 — Dec 31, 2022
Course Number
UBC Math 563
Section Number
Section Code


For help with completing the Western Dean’s agreement form, please contact the graduate student program coordinator at your institution. For more information about the agreement, please see the Western Dean's Agreement website

Other Course Details