Optimal Public Transport

Mahsa Faizrahnemoon (Simon Fraser University)

Sep 1, 2022 — Dec 31, 2022

About the course

The goal of this course is to teach the students to use mathematical models to improve and optimize public transport networks. The first part of the course is about using Markov Chains and dealing with big amount of public transport data. The students will learn how to use Markov Chains to model public transport networks, and how to validate the model by using the data. Important quantitates that can be extracted from the transition matrix of the Markov Chains will be studied with their related theorems. These quantities will be used to improve and optimize the network. The second part of the course is about using Linear Optimization in Public Transport Delay Management. Different Delay Management problems such as delay management problem with fixed connections, total delay management problem, bicriteria delay management problem, and general delay management problem will be studied. Especially perturbed timetables will be discussed and two integer programming descriptions of the set of all feasible perturbed timetables will be given. The first one is based on the “intuitive” description of the problem, while the second one uses the concept of event-activity networks. Assignment: The students should submit and present a project with some computer programming tasks for this course. They should use SUMO, Simulator of Urban Mobility, to simulate the public transport network and extract the data. They need to import the data extracted from the simulation to MATLAB or Python and implement the Markov Chain and Linear Optimization models. Guest lecturers: There will be two or three guest lecturers for this course Professor Robert Shorten from Imperial College London, Dr Emanuele Crisostomi from University of Pizza, and/or Professor Tarek Sayed from University of British Columbia. Grading: Assignment (Project presentation): 40% Midterm 1: 15% Midterm 2: 15% Final: 30% Required Reading: • Optimization in Public Transportation, Springer Optimization and Its Applications, 2006th edition, by Anita Schobel. • A big-data model for multi-modal public transportation with application to macroscopic control and optimization, International Journal of Control, vol. 88, Issue. 11, pp. 1-28, 2015 The course can be presented remotely. The recorded lectures are going to be posted.


This course is available for registration under the Western Dean's Agreement. To register, you must obtain the approval of the course instructor and you must complete the Western Dean's agreement form , using the details below. The completed form should be signed by your home institution department and school of graduate studies, then returned to the host institution of the course.

Enrollment Details

Course Name
Optimal Public Transport
Sep 1, 2022 — Dec 31, 2022
Course Number
Section Number
Section Code


For help with completing the Western Dean’s agreement form, please contact the graduate student program coordinator at your institution. For more information about the agreement, please see the Western Dean's Agreement website

Other Course Details