Physics 555, Modern Biophysics.

Winter Term 1 (Sept– Dec 2025): Schedule, Learning Goals, Homework

Text: Physical Biology of the Cell (2nd edition), by Rob Phillips, Jane Kondev, Julie Theriot, and Hernan Garcia. See Canvas for learning modules and lecture material

Week	Textbook Sections	Major Learning Goals
Week 1	Intro to Phys 555	 Understand the microscopic origins of friction Understand the relationship between friction and the diffusion
HW 1	13.1 Diffusion in the cell	 coefficient Write a microscopic expression for the diffusion coefficient
	13.2 Concentration fields and	Write and explain Fick's law
		Relate the thermal velocity of particles in solution to their temperature
		 Write and understand the Einstein equation relating the friction coefficient, diffusion constant, and the temperature
		Understand the Reynolds number, and when it is small or large
		Using dimensional analysis to find the relationship between
		the frictional drag force on a moving sphere
Week 2	13.2 The diffusion equation	 Understand dimensional analysis and how to derive Stoke's law
	13.2.1 Diffusion by	Understand the Gibbs-Boltzmann equation
HW 2	summing over microtrajectories	 Distinguish diffusive from drift flux and write equations for each
		Derive the Einstein relation
	13.2.5 The Einstein relation	 Estimate diffusion coefficients of molecules Derive the diffusion equation from continuity and from
	8.2.1 Random walk	microtrajectories
	combinatorics	 Understand and use binomial probability distributions Probability distributions of random walkers for a large number
	2.1 (pp 44-48) Binomial	of steps, in 1D, 2D, 3D.
	probabilities	 Diffusion time Biopolymer configurations as random walks
	8.2.4 Return probability for	Return probability and probability of contact formation
	dependence	
Week 3	14.2.4 (pp 561-562) Self- avoiding polymers	Force-extension relationships for stretched polymers
		Scaling law for the size of a stretched polymer
	8.3.2 Force-extension curves	Scaling law for stretched polymers
	12.2.2 Diffusion in the coll	Understand the boundary conditions of confined
	FRAP	particles vs. confined polymer distributions
		 Confined polymers; DNA conformations in the nucleus
		 Fluorescence Recovery After Photobleaching (FRAP); Fourier expansion solutions of the diffusion equation

Week 4		
		 Diffusion to capture and perfect absorbers
	13.3.1 Diffusion to capture, cell signaling, receptors	Systems of reacting particles
HW 4	10.1.10.2 Rooma are	Elastic Properties of polymers and cellular components
	everywhere: From flagella to	Vound's modulus, curvature, minimum energy conformations
	and energetics of beam	Minimum energy comormations
	deformation	Minimum energy conformations;
	10.1, 10.2: Geometry and	Persistence length of polymers
	deformation	The worm-like chain
	8.2.2. 8.2.3: Size of the genome, genetic maps and	 Composition, mechanical properties, and structure of chromatin
	physical maps of chromosome structure	Global structure of chromatin and the crumpled globule
Week 5		
	6.1: Statistical mechanics; A first look at ligand receptor binding	 Gibbs-Boltzmann formula; Statistical mechanics of ligand- receptor binding
HW 5	6.1.2: Statistical mechanics of gene expression, RNA polymerase binding to promoter	Free energy and the partition function
	sequences 6.1.3: The Gibbs Boltzmann	Chemical potential
	distribution 6 1 5: Boltzmann distribution by	Connecting thermodynamics with statistical mechanics
	best guess with limited	Microstates and macrostates
	5.5.2, 5.5.3: Thermal and	Promoter binding and transcription
	obtained by maximizing the entropy	 Most likely distributions; Maximizing the Shannon entropy
Week 6	6.1.2: Statistical mechanics of gene expression: RNA	Pol II binding to promoters; probability of binding
	polymerase and promoter	 Tethered activators and gene regulation
	19.1, 19.2.1 pages 813-814: Gene regulation and activators	• Fold change (FC) and the regulatory factor F_{reg}
	6.2.2: Eroo operav of dilute	Chemical potential; Gibbs-Duhem equation;
	solutions	Entropy of mixing
Week 7	6.2.2: Free energy of dilute solutions	Understand the law of mass action in chemical equilibrium
Evening Midterm	6.2.3: Osmotic pressure as an entropic spring	Understand osmotic pressure from the chemical potential
	6.3: The calculus of	Grand canonical ensemble
HW 7	of mass action	
	receptor binding	Chemical potential in ligand binding
	Contact with a particle reservoir	Hill functions; binding cooperativity
	7.2.2 Simple ligand-receptor binding revisited	 Condensates in mixtures; liquid-liquid phase separation
	6.4.3: Beyond simple ligand receptor binding: The Hill	Phase separation in transcription; super-enhancers
	tunction	

Week 8 HW 8 Interview	 6.4.3: Beyond simple ligand receptor binding: The Hill function 6.4.4: ATP power 15.2.4: Bimolecular reactions 15.2.7: Michaelis-Menton and enzyme kinetics 	 Hill functions; binding cooperativity Understand law of mass action applied to ATP hydrolysis; Concentration-dependence of free energy change of a reaction Statistical mechanics and Chemical kinetics: Derivation of bimolecular rate equations and dissociation constants Bimolecular rate equations and dissociation constants contd. Understand and implement the Michaelis-Menton reaction
Week 9 HW 9	19.1: Chemical and informational organization in the cell 19.2.1: The molecular implementation of regulation: Promoters, activators, and repressors	 Gene regulation review; The regulatory factor F_{reg} for an activator. The regulatory factor F_{reg} for an activator and for a repressor; Fold change FC for an activator and repressor. Activators and repressors; The Lac operon and DNA looping in regulation.
	19.2 (all subsections): Genetic Networks: Doing the right thing at the right time	 DNA looping in repression; Nucleosome remodeling in gene regulation
11: Week 10 HW 10 Interview	20.2.3 Spatial regulation 19.3.1: The dynamics of RNA polymerase and the promoter 19.3.2: Dynamics of RNA Distributions 19.3.3: Dynamics of regulated promoters	 Cooperative regulation of Hb by Bcd; precision in spatial expression patterns Dynamics of transcription by the numbers; Mean and variance of mRNA expression levels The Gillespie algorithm and stochastic models of gene regulation
Week 11 HW 11	 19.3.5: Genetic switches, natural and synthetic 19.4 Cell Signalling 20.2 Morphogen gradients; The French Flag model 20.3 Reaction-Diffusion and Spatial patterns 	 Understand stability points in phase portraits; vector fields Linear stability analysis for the genetic switch Genetic oscillators Ligand receptor binding in cell signaling Anterior-Posterior patterning Turing patterns
Week 12	20.4 Somitogenesis	Vertebral segment formation
HW 12	20.5 Lateral inhibition	Notch-delta signaling
Interview	21. 2 Gene structure; multiple sequence alignment Genome structure	Genome structurePhylogenetic trees; evolutionary mechanisms